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Stochastic Lorenz model for periodically driven Rayleigh-B@ard convection
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The order-disorder transition observed in periodically driven RayleighaBk convection is studied by
extending the generalized Lorenz model introduced by Ahlers, Hohenberg, akd[Rhys. Rev. A32, 3493
(1989] to include the effects of thermal noise. It is shown that this stochastic Lorenz model predicts, for
thermal noise intensities, an order-disorder transition line much closer to the experimental values than the
prediction of previous models. This result makes clear that a dynamical description allowing for inertial effects
is needed to account for the behavior of systems dynamically forced to cross an instability threshold.
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The subject of externally modulated Rayleighraed  explanation for this discrepancy. A similar disagreement was
convection has received considerable theorefitald] and  observed in the experiments of RET), where the heat cur-
experimental[5—8] attention. On the one hand, Rayleigh- rent is linearly ramped through the threshold. Despite a great
Benard convection has become the paradigm of patterndeal of work by many authors, a mechanism enabling ther-
forming systems. On the other, it is hoped that the dynamienal noise alone to provide the driving force for the onset of
modulation of the system through its pattern-forming insta-convection in these&lynamicexperiments has not yet been
bility can clarify the role of fluctuations in the early stages of proposed3,8,7).
pattern formation. In a recent paper we investigated the possibility that the

The influence of noise on the onset of RayleighmBe@  results of Meyer, Ahlers, and Cannéfl] can be accounted
convection has been extensively studi67,9—13. Noise is  for by the inclusion ofexternal noise source$4]. In that
generally assumed to be the mechanism responsible of destaerk we modeled the external noise as suggested by &arci
bilizing the conductive state above the convective thresholdDjalvo, Hernadez-Machado, and Sanchd4] describing
S0 its intensity is overly important in determining the dynam-temperature fluctuations in the plates of the cell as noise in
ics of convective pattern formation. The usual theoreticathe control parameter of the corresponding SH equation. We
approach to the problem is the reduction of the Naviershowed that external noise intensities compatible with recent
Stokes equations to a number of model equations, which arexperimentg12] are far too weak to reproduce the results of
supposed to embrace the main features of the syl8eémihe  Ref. [6]. This negative result makes it unplausible that the
archetype of these is the Swift-Hohenbg®H) equation, inclusion of external noise in the usual model equations can
which is a nonlinear partial differential equation for an ordersolve the problem.
parametef10]. The intensity of theinterna) thermal noise It is currently well understood that the noise effect is de-
is most usually computed through fluctuation-dissipation arcisive at times near the crossing of the convective threshold
guments, when the system is below the convective threshol]; hence a detailed description of the dynamics is crucial.
and in a stationary statel0]. For the fluid in a Rayleigh- Several years ago Ahlers, Hohenberg, andKe[1] intro-
Benard cell, the thermal noise strength can be shown to beuced a generalized Lorenz model description of periodically
Fi~kgT/(p dv?) for both free-slip9] and rigid[3] vertical  driven Rayleigh-Beard convection, showing that the system
boundary conditions, wherg is the mass density; the ki-  dynamics near the convective threshold is very different
nematic viscosity, and the plate separation. Below the con- from that in static settings. The model equations of that work
vective threshold, recent experiments by Wu, Ahlers, andeduce to the usual amplitude equatfdd] in adequate lim-
Cannell[12] verified the predictions of these models. its, but they cannot be obtained by simply replacing a time-

Above threshold, the noise intensity is argued to be theperiodic driving term in the model equations derived for
same even for systems out of equilibrium, which is justifiedstatic forcing. This leads to questioning if the inclusion of
by linearizing the Navier-Stokes equations around the adthermal noise in this model can give a more precise descrip-
equate conductive stafé,10|, although this approach has tion of the experimental results of R¢6].
been questioned in the frame of generalized fluctuations In this work we will formulate a generalized Lorenz
away from equilibriun13]. But in experiments that periodi- model like the one in Ref.1], including projections of the
cally modulate the control parameter through the convectivéhermal noise fields on the relevant hydrodynamic modes.
threshold, such as those performed several years ago MWe will use the model to predict the order-disorder transition
Meyer, Ahlers, and Canndlb], a much greateftypically by  observed in the experiments of Rgb]. We will show that,

a factor ~10% noise strength is needed to account for thethough this model still requires a greater-than-thermal noise
observed order-disorder transition, and there is not yet anintensity to fit the experimental results, the prediction for the
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thermal noise intensity is much closer to the experiments q(n) = (keny , kyny  kony). (7b)
than that obtained from the corresponding SH equation. This ) o )
shows that the importance of an accurate description of th&he fieldss;;(r,t) andg;(r,t) are similarly expanded. As in
dynamical effects produced by a periodic driving cannot belRef. [1] we takek,=m and k,=k,=k., the critical wave

neglected, and that these effects seem not to be embraced Bymber for horizontal rolls, corresponding to the critical
the usual stochastic models. Rayleigh numbeR=R; in the absence of modulation. Re-

We consider a fluid layer between two laterally infinite Iplacmtg exga”S'Pf_“‘G) in eqs_. '(1I)’t and It<_eep|ng onlyd_the
horizontal plates separated by a distadceThe density of tOW?S T}? el? gl\lnng ?hm(? r'v't"?‘ runca |tc)(tn(_)rrespon ing
the fluid is p, its temperature i, its velocity isu, and its o straight rolls along tha direction, we obtain
pressure i. The kinematic viscosity is denoted by the _ 5 _ ke ~
thermal diffusivity by x, and the gravitational acceleration  diUx(N1,t)=—o(kg+ Wz)ux(nl,t)—ﬂm 6(ng,t)
by g. Introducing dimensionless variables by the scaling ¢
t—(x/d?)t, |=I/d, AT—R, whereR=(agd®AT)/(xv) is +&,(1), (8a)
the Rayleigh number, and defining the Prandtl number
o=l k, the Oberbeck-Boussinesq equations rgdd 28Nyt = —(k§+772)0(n1,t)— k;CUX(nl,t)
(dy+u-VIu=oV2u+oTz—Vp+V-s, (1a - -

X[R(t)—27S"(2t) —270(n,,t) ]+ &(1),

(ﬂt+U~V)T=V2T—V~q, (1b) (8b)
V-u=0. (19 30(ng,H)=—(2m)?0(nz,t) — k(g 1) B(Ny 1)+ Ex(1),
8c
Thermal noise is modeled by the zero-mean Gaussian white (89
noise fieldss andq, with self-correlationg 8] with
—_Tl _TU
(@i(r Hay(r D) =cedr—r)at—t)s;,  (2a RIO=TH-THY, ©)
- . ) T(z,t)=R()(1-2)+S*(z,t) + T*(1), (10
(sij(r,t)sim(r’,t"))=csd(r—r") 8(t—t")( 5 Sjm+ 6im5j(lz)b)
o S*(zt)= 2, S*(n,t)sin(nm2), (12)
and thermodynamic intensities n=1
kT 2(Tdag/kv)? andn;=(1,0,1) andn,=(0,0,2). HereS*(z,t) is the devia-
CS=(pdV2) o Cq= cvdkg) (3)  tion of the conductive temperature profile from the linear
v B

profile corresponding to the instantaneous Rayleigh number
R(t). The superscript indicates that it corresponds to a later-
ally infinite system, and is kept for consistency with the no-
tation of Ref.[1]. The noises are given by

The dimensionless temperatufie= T°+ 6 is expressed in
terms of the conduction profil@®(z,t) satisfying the heat
conduction equation

i -
HTe= 07T @ 610 = 22 [ kSN, D) + 7500, 1)
C

The periodic driving is accounted for by the boundary con- L= o=
ditions, which we will take to be the same as in the experi- TKESz(N1,t) — TKS,A N1, 1) ], (1239
mental setting of Ref6), &(t) = —i[kx(n. )+ 7G(ny, 0], (12D

TYO)=T'(t)=T,+A cog wt), (5a) £5(t) = —i27G,(ny 1) (120

T(LH=TUt)=T,. (5b) In deriving these equations, symmetries imposed by the

boundary conditions have been used. Using these symme-
Working for simplicity with free-slip boundary condi- tries and Eqs(2), it is straightforward to obtain

tions, the Lorenz model is obtained by introducing the ex- )

. kc
pansions (@ (MO (0 ,1)) = 555288 St )
BO=i2 G0t j=xyz (63 X[ 3+ (8= 8= 8) ],
(133
o(r.t)=i>, 6(n,t)eldm (6b) _ k2
n Si(NOSM(N’,t"))= mcs(‘silb‘jm_F Sim 1) o(t—t")
with

X[5n,n’+(1_25iz)(1_25jz)5n,ﬁ’]a
n=(ny,ny,n,), n=0*x1+2 ..., (79 (13b)
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wheren=(n, ,Ny,—n,). Now defining the scaled variables . . . .

0.30 | "
X=— 2T (.0, (149
\/— £ 0.20 | Deterministic
-
0.10 1
y= zf[ 6(ny 1), (14b)
0.00 - 1
27T~ 1 1 1 1
z= - 0(nz,0), (149 000 010 020 030 040 050
C
with FIG. 1. Order-disorder transition line. The circles are the experi-
2, 23 mental data of Meyer, Ahlers, and Cannf@]. The dashed line is
(KE+79) . :
C:C—Z (153 the ODTL predicted by the SH equation of Ré#] for thermal
kg noise strengtlilower ling) and for a noise strength»510* times the
thermal one(upper ling. The continuous line is the ODTL pre-
(2m)? dicted by the Lorenz modéL6) for c; andc,, equal to their ther-
= K2+ 72’ (15b) mal values(lower ling) and for 200 times their thermal valuésp-
¢ per line.
1 . : .
=2 2 (150 sweep repeatedly through its convective threshold by setting
T upper and lower plate temperatures like the ones in E5js.
we obtain the system with w=1. In thIS. expenment an orQer—cﬁsorder transition
was observed. This is a sharp transition in tlag, §) plane
rx=—o(x—y) + VD, & (1), (169  DPetween “stochastic behaviofthe conve<‘:‘t|ve cell pa’gte”rn
is not reproduced for successive cy¢laad “deterministic
o behavior(the same convective pattern reappears in succes-
=—y+Xxr(t)—z]++ 16b ) ) N i L
Y y*+x(r(t)=2] & (160 sive cycles$. This transition is depicted in Fig. 1.
: The order-disorder transition lin€@DTL) can be analyti-
r12=—b(z-xy)+ VDE,1), (160 nepTL) Y

cally defined as the curve on tleg-S plane, where the two-
which corresponds to Eq€2.7) of Ref.[1], but includes the times self-correlation of the velocity field after one period of
zero-mean Gaussian white noisgs é,, andé,. Their in- the driving, decays to half its equal-times val(gee, e.g.,
tensities and correlations are obtained from EG®) and ~ Refs.[2,15)), which for the Lorenz model gives

(15), and are given by

(X(t+ 27 w)x(1)) = 5 (X4(1)). (23
(&(D&(1))=8;0(t-1"), 7

2 2 bi2 Several numeric anajappromnwatéz analytic computations

D =Ec D — 71 e D.— 71 e (19) (see, e.g9.,2,4,8,19) using the “standard theory(SH equa-
* bR, ¥ y b_RCZ a z 2RC2 a tion) predict a transition line, for thermal noise intensity, far
lower than the experimental data. The prediction of the SH

The periodic forcing is given by equation for thermal noigel] is shown in Fig. 1. The ODTL
- predicted from the “standard theory” can be made to fit the
T = R(t)—27S"(2}) (19 experimental data, only by taking the internal noise strength

as an adjustable parameter and setting it ¥018* times its

thermal valug2,4], as shown in Fig. 1.

The conversion to rigid boundary conditions is now per- Integrating systenil6) of stochastic differential equations

formed by taking 1] by a Runge-Kutta methdd 6], and averaging over 20eal-
izations, we computed the ODTL predicted by the Lorenz

(20) model for thermal noise intensities. The result is plotted in
Fig. 1. It can be seen that the prediction of the Lorenz model

lies approximately midway between that of the SH equation

(="

1
ke=3.117, b=2, m=5, R=17078,

T(t)=1+¢€p+ SRe(f(1)}, (21)  and the experimental ODTL. We also have taken the noise
intensitiescs andc, as adjustable parameters, and found that
whereey=(T,—Ty)/R., 6=A/R., and the Lorenz model prediction fits the experimental ODTL for

4 — it values~ 200 times the thermal ones, as shown in Fig. 1.
9 \iwe It must be stressed that the Lorenz model reduces to the
2tan Vi w/2)(m2—\iw)(9m2—iw) amplitude equatiofl] for the static case and large Prandtl
numbers, and the predictions of this equation and that of the
The experiment we want to compare with was performedSH equation correctly describe the results of static experi-
by Meyer, Ahlers, and Canndlf]. The system was forced to ments below the convective threshdlt?]. Thus it can be

f(t)= (22
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expected that for experiments in which the threshold is not . , . .
crossed, the SH equation would still give an accurate de- 0.30
scription of the dynamics. This has indeed been verified in °
recent experimentgsl 2]. 0.20 L L
On the other hand, for experiments like those in RR&f, ) Deterministic
where the convective threshold is repeatedly and swiftly 0.10 b
crossed, the Lorenz model presented here shows a much ¢~ Stochastic
closer fitting of the ODTL data for thermal noise intensities, =
and a discrepancy between this noise intensity and the one 0.00 1 e i
required to fit the data much lower than that of the “standard 000 040 020 030 040 050
theory.” Previous models, e.g., the SH equation or the am- :
plitude equation, rely on a single first-order evolution equa-
tion for an order parameter or for the amplitude of its more FIG. 2. Order-disorder transition lines predicted by the Lorenz
unstable mode, and these equations are thus of a purely digiodel (16) (continuous ling by its mean-field approximation
sipative character. The Lorenz model can be recast as (@ashed ling and by retaining the full horizontal wave-number
second-order evolution equation for the velocity variable dependencédotted ling. All curves correspond to thermal noise
of Eq. (163, as has been pointed out by Takeydrd [see, intensities. The circles are the experimental data of Meyer, Ahlers,
e.g., Eq(2.18 of Ref.[1]], so it includes at least some of the and Cannel[6].
inertial effects present in the Oberbeck-Boussinesq equa-
tions. The better results of the Lorenz model for dynamicallyzontal wave-number dependence in a vertical eigenfunction
driven experiments like the one in R¢6l—though not yet  expansion of the Oberbeck-Boussinesq equatidns The
enough to give an exact matching between theory anghwest nontrivial truncation(retaining the same vertical
exper|ment—§hp\_/v that these inertial effec?s shoul_d not benodes as in the Lorenz model presented heren be
neglecteda priori in nonautonomous dynamic experiments. pandled with relative ease in the mean-field approximation
The effects of(external noise in the imposed vertical inyoduced in Ref[4]. As shown in Fig. 2, this gives results
temperature gradient can be included in the present model iy the ODTL that are barely distinguishable from those of
the same way as it was done for the SH equafibh4:  the | orenz model(16) and those ofts mean-field approxi-
additive noise in, or T, appears as multiplicative noise in mation, giving confidence that the Lorenz model results for
Eq. (16b). However, as it happens for the SH equation, thethe ODTL are not fundamentally biased by its poor descrip-

fitting'of the experimental ODTL requir_es ex'ternal noise in'tion of the horizontal wave-number dependence. These re-
tensities far greater than those compatible with recent experits will be presented at length elsewhere.

ments[12].

Perhaps the worse-justified approximation made in formu- This work has been supported in part by CONICOR Grant
lating the Lorenz model is the horizontal wave-number trun-No. AIF-3854/95, SeCyT-UNC Grant No. 765/95, and
cation. The model can be improved by retaining the full hori-ANTORCHAS Grant No. A-13359/1-000050.
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