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Stochastic Lorenz model for periodically driven Rayleigh-Bénard convection
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The order-disorder transition observed in periodically driven Rayleigh-Be´nard convection is studied by
extending the generalized Lorenz model introduced by Ahlers, Hohenberg, and Lu¨cke @Phys. Rev. A32, 3493
~1985!# to include the effects of thermal noise. It is shown that this stochastic Lorenz model predicts, for
thermal noise intensities, an order-disorder transition line much closer to the experimental values than the
prediction of previous models. This result makes clear that a dynamical description allowing for inertial effects
is needed to account for the behavior of systems dynamically forced to cross an instability threshold.
@S1063-651X~97!50304-7#

PACS number~s!: 47.20.Bp, 05.40.1j, 47.20.Hw, 02.50.Ey
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The subject of externally modulated Rayleigh-Be´nard
convection has received considerable theoretical@1–4# and
experimental@5–8# attention. On the one hand, Rayleig
Bénard convection has become the paradigm of patte
forming systems. On the other, it is hoped that the dyna
modulation of the system through its pattern-forming ins
bility can clarify the role of fluctuations in the early stages
pattern formation.

The influence of noise on the onset of Rayleigh-Be´nard
convection has been extensively studied@6,7,9–12#. Noise is
generally assumed to be the mechanism responsible of d
bilizing the conductive state above the convective thresh
so its intensity is overly important in determining the dyna
ics of convective pattern formation. The usual theoreti
approach to the problem is the reduction of the Navi
Stokes equations to a number of model equations, which
supposed to embrace the main features of the system@8#. The
archetype of these is the Swift-Hohenberg~SH! equation,
which is a nonlinear partial differential equation for an ord
parameter@10#. The intensity of the~internal! thermal noise
is most usually computed through fluctuation-dissipation
guments, when the system is below the convective thres
and in a stationary state@10#. For the fluid in a Rayleigh-
Bénard cell, the thermal noise strength can be shown to
F th;kBT/(r dn2) for both free-slip@9# and rigid@3# vertical
boundary conditions, wherer is the mass density,n the ki-
nematic viscosity, andd the plate separation. Below the co
vective threshold, recent experiments by Wu, Ahlers, a
Cannell@12# verified the predictions of these models.

Above threshold, the noise intensity is argued to be
same even for systems out of equilibrium, which is justifi
by linearizing the Navier-Stokes equations around the
equate conductive state@8,10#, although this approach ha
been questioned in the frame of generalized fluctuati
away from equilibrium@13#. But in experiments that periodi
cally modulate the control parameter through the convec
threshold, such as those performed several years ag
Meyer, Ahlers, and Cannell@6#, a much greater~typically by
a factor;104) noise strength is needed to account for t
observed order-disorder transition, and there is not yet
551063-651X/97/55~4!/3824~4!/$10.00
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explanation for this discrepancy. A similar disagreement w
observed in the experiments of Ref.@7#, where the heat cur-
rent is linearly ramped through the threshold. Despite a g
deal of work by many authors, a mechanism enabling th
mal noise alone to provide the driving force for the onset
convection in thesedynamicexperiments has not yet bee
proposed@3,8,7#.

In a recent paper we investigated the possibility that
results of Meyer, Ahlers, and Cannell@6# can be accounted
for by the inclusion ofexternal noise sources@4#. In that
work we modeled the external noise as suggested by Ga´a-
Ojalvo, Herna´ndez-Machado, and Sancho@14# describing
temperature fluctuations in the plates of the cell as noise
the control parameter of the corresponding SH equation.
showed that external noise intensities compatible with rec
experiments@12# are far too weak to reproduce the results
Ref. @6#. This negative result makes it unplausible that t
inclusion of external noise in the usual model equations
solve the problem.

It is currently well understood that the noise effect is d
cisive at times near the crossing of the convective thresh
@8#; hence a detailed description of the dynamics is cruc
Several years ago Ahlers, Hohenberg, and Lu¨cke @1# intro-
duced a generalized Lorenz model description of periodic
driven Rayleigh-Be´nard convection, showing that the syste
dynamics near the convective threshold is very differ
from that in static settings. The model equations of that w
reduce to the usual amplitude equation@11# in adequate lim-
its, but they cannot be obtained by simply replacing a tim
periodic driving term in the model equations derived f
static forcing. This leads to questioning if the inclusion
thermal noise in this model can give a more precise desc
tion of the experimental results of Ref.@6#.

In this work we will formulate a generalized Loren
model like the one in Ref.@1#, including projections of the
thermal noise fields on the relevant hydrodynamic mod
We will use the model to predict the order-disorder transit
observed in the experiments of Ref.@6#. We will show that,
though this model still requires a greater-than-thermal no
intensity to fit the experimental results, the prediction for t
R3824 © 1997 The American Physical Society
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55 R3825STOCHASTIC LORENZ MODEL FOR PERIODICALLY . . .
thermal noise intensity is much closer to the experime
than that obtained from the corresponding SH equation. T
shows that the importance of an accurate description of
dynamical effects produced by a periodic driving cannot
neglected, and that these effects seem not to be embrace
the usual stochastic models.

We consider a fluid layer between two laterally infini
horizontal plates separated by a distanced. The density of
the fluid isr, its temperature isT, its velocity isu, and its
pressure isp. The kinematic viscosity is denoted byn, the
thermal diffusivity byk, and the gravitational acceleratio
by g. Introducing dimensionless variables by the scal
t→(k/d2)t, l→ l /d, DT→R, whereR5(agd3DT)/(kn) is
the Rayleigh number, and defining the Prandtl num
s5n/k, the Oberbeck-Boussinesq equations read@1#

~] t1u•“ !u5s¹2u1sTẑ2“p1“•s, ~1a!

~] t1u•“ !T5¹2T2“•q, ~1b!

“•u50. ~1c!

Thermal noise is modeled by the zero-mean Gaussian w
noise fieldss andq, with self-correlations@8#

^qi~r ,t !qj~r ,t !&5cqd~r2r 8!d~ t2t8!d i j , ~2a!

^si j ~r ,t !slm~r 8,t8!&5csd~r2r 8!d~ t2t8!~d i ld jm1d imd j l !,
~2b!

and thermodynamic intensities

cs5S kBTrdn2D2s3, cq5
2~Td3ag/kn!2

~cVd
3/kB!

. ~3!

The dimensionless temperatureT5Tc1u is expressed in
terms of the conduction profileTc(z,t) satisfying the heat
conduction equation

] tT
c5]z

2Tc. ~4!

The periodic driving is accounted for by the boundary co
ditions, which we will take to be the same as in the expe
mental setting of Ref.@6#,

Tc~0,t !5Tl~ t !5Tl1A cos~vt !, ~5a!

Tc~1,t !5Tu~ t !5Tu . ~5b!

Working for simplicity with free-slip boundary condi
tions, the Lorenz model is obtained by introducing the e
pansions

uj~r ,t !5 i(
n
ũ j~n,t !e

iq~n!•r, j5x,y,z, ~6a!

u~r ,t !5 i(
n

ũ~n,t !eiq~n!•r, ~6b!

with

n5~nx ,ny ,nz!, ni50,61,62, . . . , ~7a!
ts
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q~n!5~kxnx ,kyny ,kznz!. ~7b!

The fieldssi j (r ,t) andqi(r ,t) are similarly expanded. As in
Ref. @1# we takekz5p and kx5ky5kc , the critical wave
number for horizontal rolls, corresponding to the critic
Rayleigh numberR5Rc in the absence of modulation. Re
placing expansions~6! in Eqs. ~1!, and keeping only the
lowest modes giving a nontrivial truncation~corresponding
to straight rolls along thex direction!, we obtain

] tũx~n1 ,t !52s~kc
21p2!ũx~n1 ,t !2s

pkc
kc
21p2 ũ~n1 ,t !

1j1~ t !, ~8a!

] tũ~n1 ,t !52~kc
21p2!ũ~n1 ,t !2

kc
p
ũx~n1 ,t !

3@R~ t !22pS̃`~2,t !22pũ~n2 ,t !#1j2~ t !,

~8b!

] tũ~n2 ,t !52~2p!2ũ~n2 ,t !24kcũx~n1 ,t !ũ~n1 ,t !1j3~ t !,
~8c!

with

R~ t !5Tl~ t !2Tu~ t !, ~9!

Tc~z,t !5R~ t !~12z!1S`~z,t !1Tu~ t !, ~10!

S`~z,t !5 (
n51

`

S̃`~n,t !sin~npz!, ~11!

andn15(1,0,1) andn25(0,0,2). HereS`(z,t) is the devia-
tion of the conductive temperature profile from the line
profile corresponding to the instantaneous Rayleigh num
R(t). The superscript indicates that it corresponds to a la
ally infinite system, and is kept for consistency with the n
tation of Ref.@1#. The noises are given by

j1~ t !5
i

kc
21p2 @p2kcs̃xx~n1 ,t !1p3s̃xz~n1 ,t !

2pkc
2s̃zx~n1 ,t !2p2kcs̃zz~n1 ,t !#, ~12a!

j2~ t !52 i @kcq̃x~n1 ,t !1pq̃z~n1 ,t !#, ~12b!

j3~ t !52 i2pq̃z~n2 ,t !. ~12c!

In deriving these equations, symmetries imposed by
boundary conditions have been used. Using these sym
tries and Eqs.~2!, it is straightforward to obtain

^q̃i* ~n,t !q̃ j~n8,t8!&5
kc
2

2~2p!2
cqd i jd~ t2t8!

3@dn,n81~d iz2d ix2d iy!dn,ñ8#,

~13a!

^s̃i j* ~n,t !s̃lm~n8,t8!&5
kc
2

2~2p!2
cs~d i ld jm1d imd j l !d~ t2t8!

3@dn,n81~122d iz!~122d jz!dn,ñ8#,

~13b!
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whereñ5(nx ,ny ,2nz). Now defining the scaled variables

x522A2
2p

bARc

ũx~n1 ,t !, ~14a!

y52A2
p

AbRc
ũ~n1 ,t !, ~14b!

z5
2p

Rc
ũ~n2 ,t !, ~14c!

with

Rc5
~kc

21p2!3

kc
2 , ~15a!

b5
~2p!2

kc
21p2 , ~15b!

t15
1

kc
21p2 , ~15c!

we obtain the system

t1ẋ52s~x2y!1ADxjx~ t !, ~16a!

t1ẏ52y1x@ r̃ ~ t !2z#1ADyjy~ t !, ~16b!

t1ż52b~z2xy!1ADzjz~ t !, ~16c!

which corresponds to Eqs.~2.7! of Ref. @1#, but includes the
zero-mean Gaussian white noisesjx , jy , andjz . Their in-
tensities and correlations are obtained from Eqs.~13! and
~15!, and are given by

^j i~ t !j j~ t8!&5d i jd~ t2t8!, ~17!

Dx5
t1kc

2

bRc
cs , Dy5

t1kc
2

bRc
2 cq , Dz5

t1bkc
2

2Rc
2 cq . ~18!

The periodic forcing is given by

r̃ ~ t !5
R~ t !22pS̃`~2,t !

Rc
. ~19!

The conversion to rigid boundary conditions is now p
formed by taking@1#

kc53.117, b52, t15
1

2p2 , Rc51707.8, ~20!

r̃ ~ t !511e01dRe$ f ~ t !%, ~21!

wheree05(Tl2Tu)/Rc , d5A/Rc , and

f ~ t !5
9p4Aive2 ivt

2tan~Aiv/2!~p22Aiv!~9p22Aiv!
. ~22!

The experiment we want to compare with was perform
by Meyer, Ahlers, and Cannell@6#. The system was forced t
-

d

sweep repeatedly through its convective threshold by set
upper and lower plate temperatures like the ones in Eqs.~5!
with v51. In this experiment an order-disorder transitio
was observed. This is a sharp transition in the (e0 ,d) plane
between ‘‘stochastic’’ behavior~the convective cell pattern
is not reproduced for successive cycles! and ‘‘deterministic’’
behavior~the same convective pattern reappears in suc
sive cycles!. This transition is depicted in Fig. 1.

The order-disorder transition line~ODTL! can be analyti-
cally defined as the curve on thee0-d plane, where the two-
times self-correlation of the velocity field after one period
the driving, decays to half its equal-times value~see, e.g.,
Refs.@2,15#!, which for the Lorenz model gives

^x~ t12p/v!x~ t !&5 1
2 ^x2~ t !&. ~23!

Several numeric and~approximate! analytic computations
~see, e.g.,@2,4,8,15#! using the ‘‘standard theory’’~SH equa-
tion! predict a transition line, for thermal noise intensity, f
lower than the experimental data. The prediction of the
equation for thermal noise@4# is shown in Fig. 1. The ODTL
predicted from the ‘‘standard theory’’ can be made to fit t
experimental data, only by taking the internal noise stren
as an adjustable parameter and setting it to 53104 times its
thermal value@2,4#, as shown in Fig. 1.

Integrating system~16! of stochastic differential equation
by a Runge-Kutta method@16#, and averaging over 105 real-
izations, we computed the ODTL predicted by the Lore
model for thermal noise intensities. The result is plotted
Fig. 1. It can be seen that the prediction of the Lorenz mo
lies approximately midway between that of the SH equat
and the experimental ODTL. We also have taken the no
intensitiescs andcq as adjustable parameters, and found t
the Lorenz model prediction fits the experimental ODTL f
values;200 times the thermal ones, as shown in Fig. 1.

It must be stressed that the Lorenz model reduces to
amplitude equation@1# for the static case and large Prand
numbers, and the predictions of this equation and that of
SH equation correctly describe the results of static exp
ments below the convective threshold@12#. Thus it can be

FIG. 1. Order-disorder transition line. The circles are the exp
mental data of Meyer, Ahlers, and Cannell@6#. The dashed line is
the ODTL predicted by the SH equation of Ref.@4# for thermal
noise strength~lower line! and for a noise strength 53104 times the
thermal one~upper line!. The continuous line is the ODTL pre
dicted by the Lorenz model~16! for cs andcq , equal to their ther-
mal values~lower line! and for 200 times their thermal values~up-
per line!.
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expected that for experiments in which the threshold is
crossed, the SH equation would still give an accurate
scription of the dynamics. This has indeed been verified
recent experiments@12#.

On the other hand, for experiments like those in Ref.@6#,
where the convective threshold is repeatedly and swi
crossed, the Lorenz model presented here shows a m
closer fitting of the ODTL data for thermal noise intensitie
and a discrepancy between this noise intensity and the
required to fit the data much lower than that of the ‘‘stand
theory.’’ Previous models, e.g., the SH equation or the a
plitude equation, rely on a single first-order evolution equ
tion for an order parameter or for the amplitude of its mo
unstable mode, and these equations are thus of a purely
sipative character. The Lorenz model can be recast a
second-order evolution equation for the velocity variablex
of Eq. ~16a!, as has been pointed out by Takeyama@17# @see,
e.g., Eq.~2.18! of Ref. @1##, so it includes at least some of th
inertial effects present in the Oberbeck-Boussinesq eq
tions. The better results of the Lorenz model for dynamica
driven experiments like the one in Ref.@6#—though not yet
enough to give an exact matching between theory
experiment—show that these inertial effects should not
neglecteda priori in nonautonomous dynamic experiment

The effects of~external! noise in the imposed vertica
temperature gradient can be included in the present mod
the same way as it was done for the SH equation@14,4#:
additive noise inTl or Tu appears as multiplicative noise i
Eq. ~16b!. However, as it happens for the SH equation,
fitting of the experimental ODTL requires external noise
tensities far greater than those compatible with recent exp
ments@12#.

Perhaps the worse-justified approximation made in form
lating the Lorenz model is the horizontal wave-number tru
cation. The model can be improved by retaining the full ho
tt
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zontal wave-number dependence in a vertical eigenfunc
expansion of the Oberbeck-Boussinesq equations~1!. The
lowest nontrivial truncation~retaining the same vertica
modes as in the Lorenz model presented here! can be
handled with relative ease in the mean-field approximat
introduced in Ref.@4#. As shown in Fig. 2, this gives result
for the ODTL that are barely distinguishable from those
the Lorenz model~16! and those ofits mean-field approxi-
mation, giving confidence that the Lorenz model results
the ODTL are not fundamentally biased by its poor descr
tion of the horizontal wave-number dependence. These
sults will be presented at length elsewhere.

This work has been supported in part by CONICOR Gr
No. AIF-3854/95, SeCyT-UNC Grant No. 765/95, an
ANTORCHAS Grant No. A-13359/1-000050.

FIG. 2. Order-disorder transition lines predicted by the Lore
model ~16! ~continuous line!, by its mean-field approximation
~dashed line!, and by retaining the full horizontal wave-numbe
dependence~dotted line!. All curves correspond to thermal nois
intensities. The circles are the experimental data of Meyer, Ahl
and Cannell@6#.
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